【评论分享有礼】毕业遇上疫情怎么办?4条技术指南轻松应对(内含求职、租房攻略)

摘要:这届应届生实在太难了!

云毕业照、云授学位、云拨穗、云毕业典礼……疫情之下,2020年的毕业季显得有些特别。

这一届毕业生们,既不能和同学们集体狂欢到天明,也面临着非常严峻的就业环境。

疫情之下,从毕业到求职、租房,社会新鲜人又该如何苦中作乐,弥补遗憾,度过这个特殊的毕业季呢?且看以下疫情毕业生求生技术指南。

 

【指南一:AI换脸,拍一张个人专属毕业照】

如果问毕业季最有仪式感的事情是什么?非毕业照莫属。学士服穿上身,pose摆起来,大学四年才能算圆满。但疫情之下,不少人在朋友圈里感叹失去了可能是唯一一次穿学士服的的机会。

那么试试AI换脸技术,拍一张个人专属的毕业照吧!

先上最后的效果:

https://bbs-img.huaweicloud.com/blogs/img/1591950881345013377.png

想要多人合照,安排:

https://bbs-img.huaweicloud.com/blogs/img/1591950890467019247.png

还能更换背景、樱花树下、未名湖畔,任意切换:

https://bbs-img.huaweicloud.com/blogs/img/1591950895509002341.png

这一套 “云拍照”系统便是基于华为ModelArts平台操作的。

实现过程很简单:1、人脸检测;2、人脸融合;3、模型部署成在线服务

是的,只要这三步,人人都可以成为云毕业照的掌镜师。

展开来说,我们先使用dlib库中的shape_predictor方法,通过68个可以显著代表人脸特征的特征点采集人脸信息,得到换脸人像和被换脸人像的人脸掩模,最后通过泊松融合合成换脸后的毕业照。

稍微有点复杂的是多人合照,因为它涉及到对上传照片中每一张人脸位置的检测,主流的方法是用神经网络检测,但编写难度、硬件要求较高。华为云ModelArts自动学习中的“物体检测”和“一键训练部署”功能可以轻松解决这个问题。

打开华为云ModelArts控制台,点击【自动学习】,就进入了配置界面。

选定数据集输出和输出位置之后,点击创建项目,进入到【数据标注】界面中。

在数据标注界面,可以很方便地上传数据,通过鼠标框选的方式进行人脸数据的标注,完成数据集的标注后,点击【开始训练】按钮。

训练完成时,会自动部署在线预测服务,通过调用在线服务,就可以实现人脸检测功能。

整个项目的流程其实很简单,感兴趣的同学可以去ModelArts上动手DIY一个。

也可以点击右边链接,直接生成自己的专属毕业照:http://119.3.249.156:32123/

 

部分内容参考自:https://bbs.huaweicloud.com/blogs/174983

 

【指南二:技术党上线,租房神器合理规划最佳租房地点】

租房,往往是比求职更让应届毕业生痛苦的事情。

对租房新手来说,一没钱,二不熟悉交通,三对中介一无所知。想要快速找到工作地点附近性价比最高的租房点和房源,基本不可能。

但知识就是力量,有人就通过高德API+Python爬虫解决了这个租房难题https://bbs.huaweicloud.com/blogs/147439)。

原理也很简单,先分析需要爬取的页面,提取房源的名称、地址、租金等信息,然后编写运行Python脚本,生成rent.csv,再借助高德的JavaScript API示例搭建页面,调用相关API。

实验中会用到三个文件:crawl.py、rent.csv和index.html,其中rent.csv由crawl.py生成,是房源文件,crawl.py是一个非常简单的爬取网页的脚本,index.html是最重要的显示地图的部分。

大功告成后,选择你的工作地点,页面会自动标记一小时的通勤范围,导入爬取的房源文件,任选一处房源便可以自动规划路径。

下面我们以在北京望京SOHO附近租房为例,首先输入地址,地图中蓝色块就是距离望京SOHO一小时车程(地铁+公交)的范围。

确定好地点后,导入爬取的房源文件(这里我们使用的原博主提供58同城的租房信息),地图上显示的蓝色地点标记就是所有的房源。

在蓝色区域里任意点击一个蓝色地点标记,可以获取房源所在的小区,点击小区名称会自动跳转到58同城的页面,列出房源的详细信息(地址、租金、环境),同时自动规划出从房源到公司的路径。

由于只爬取了58同城上的公寓,所以房源数量较少。大家可以按需制作Python脚本,比如根据租房区域、价格、类型等要求来筛选房源,同时抓取我爱我家、贝壳租房、自如、豆瓣小组等租房平台的数据,这样就轻松迈出了租房的第一步:在海量数据中快速筛出最合适的房源。

最后,再顺便安利一个公交辐射地图https://bus.daibor.com/,可以定位查询直达公司的公交线路,顺着图中的彩色线条,或许也能发现性价比高的的房源。

 

【指南三:最难就业季,Classroom助你拿下大厂offer】

求职和租房,一直是毕业生的两大难。尤其是在今年的就业形势下,应届生想要拿到满意的offer更是难上加难。

那么,最难就业季,初出茅庐的大学生如何能够拿下大厂offer?

华为高校教育解决方案专家张宇最近就在直播中分享了他的几点心得,核心点就是从学校到企业的蜕变,关键在于突破个人瓶颈,提升自己的技术能力。如果想短期内获得大幅提升,只有一条路:站在巨人的肩膀上。

华为云Classroom平台就是这个“巨人”。

在Classroom上(https://classroom.devcloud.huaweicloud.com/),华为工程师依托海量企业级项目,总结了他们的实战经验和技术方案,制作成通俗易懂的体系化课程免费提供给大家,帮助提升技术能力。

比如张宇老师主讲的WEB前端全栈成长计划,让你0基础入门、3个月构建前端技能体系,课程覆盖HTML/JavaScript/Node.js等核心知识点,助力你向全栈工程师迈进。

Classroom上还有诸如Python、Java、AI相关的基础课程、习题库和实验,满足入门到进阶的巩固学习提高,以及云端实验室,让你直接动手完成网站搭建、人脸识别、实时对战游戏开发等一系列有趣又好玩的项目。比如上文提到的AI毕业照,就可以在这个实验室轻松get。

同时,华为云Classroom还会举办面试培训会,比如之前为湖南师范大学开设的Java专场,就请到了拥有12年IT教育工作经验的华为高级培训专家鲍国钰,分享了毕业生在Java面试过程中需要着重准备以及注意的相关知识点,并在华为云Classroom平台上线了大厂招聘的笔试真题供同学们自测。

 

【指南四:刷题神器:一个月从入门到offer,你值得拥有】

对于准备一脚踏入程序员职业生涯的毕业生来说,面试前的刷题也很重要,所以程序员最爱逛的网站上刷题攻略常年排在首页推荐,GitHub上更是有无数个刷题攻略,最高有5000颗星的标记。

以斩获最高星的项目为例(https://github.com/greyireland/algorithm-pattern),作者表示该项目是自己找工作时,从 0 开始刷 LeetCode 的心得记录,最终通过各种刷题文章、专栏、视频等总结了一套自己的刷题模板。

在内容划分方面,入门篇分为go语言和算法,数据结构主要包括二叉树、链表、栈和队列等,往下是算法相关,比如二分搜索、排序算法、递归思维等。

至于刷题路径,总结起来很简单,首先来一套高频知识点的练习题,不会就直接跳过;然后再刷LeetCode的探索卡片巩固知识点;第三步就是有针对性地练习大厂的面试题。

作者总结,刷完这些练习题,基本对数据结构和算法有自己的认识体会,他从4月份找工作开始,从0刷LeetCode,中间大概花了一个半月左右时间刷完240题,成功拿下一线互联网大厂的offer。

至于面试到底要刷多少题,作者表示取决于你想进什么样公司,如果是BAT、华为这样的大厂,200至300题就基本满足大部分面试需要了。

所以,面试前临时抱佛脚的最佳选择:刷题模板走一套。

 

【衷心的祝福】

初入社会的小可爱们,AI毕业照、租房神器、面试技能速成、刷题神器,总有一款适合你,帮你顺利度过这个略有些黯淡的毕业季。

最后,诚挚的祝愿所有毕业学子长风破浪会有时,直挂云帆济沧海,前程似锦!

 


【福利】

关注【华为云】官方博客,在文末发表话题评论并分享本文至朋友圈,即可参与抽奖赢取好礼!

 

活动规则

话题2选1在文末评论区发表评论

话题1:

“疫情之下,你所在的公司裁员了吗?缩紧预算了吗?如何提高职场竞争力/技术能力才能抵抗住裁员大潮?

话题2:

这届毕业生太难了!疫情之下,你中招了吗?求职路上遇到了何种难题?又是如何化解的呢?

 

活动时间

  • 即日起至7月12日24:00

奖品设置

  • 优质评论奖 :100元京东卡1张

  • 幸运奖:华为云定制双肩包1个

  • 参与奖 :华为云定制鼠标垫1个

评奖规则

  1. 按对应楼层的评论内容质量评定获奖等级;
  2. 在文章下方留言你对于话题的看法,并分享本文至朋友圈,保留至开奖日(7月13日,下周一)方可参与评奖哦!
    开奖时若出现朋友圈删除的情况,华为云有权取消中奖资格哦;
  3. 每个ID仅限一次获奖机会;
  4. 获奖奖品不可更换。
实付0元
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值